Local Regression With Meaningful Parameters
نویسندگان
چکیده
منابع مشابه
Tracking time-varying parameters with local regression
This paper shows that the recursive least-squares (RLS) algorithm with forgetting factor is a special case of a varying-coe$cient model, and a model which can easily be estimated via simple local regression. This observation allows us to formulate a new method which retains the RLS algorithm, but extends the algorithm by including polynomial approximations. Simulation results are provided, whic...
متن کاملLocal Polynomial Quantile Regression With Parametric Features
We propose a new approach to conditional quantile function estimation that combines both parametric and nonparametric techniques. At each design point, a global, possibly incorrect, pilot parametric model is locally adjusted through a kernel smoothing fit. The resulting quantile regression estimator behaves like a parametric estimator when the latter is correct and converges to the nonparametri...
متن کاملModel Learning with Local Gaussian Process Regression
Precise models of the robot inverse dynamics allow the design of significantly more accurate, energy-efficient and more compliant robot control. However, in some cases the accuracy of rigidbody models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse d...
متن کاملFuzzy local regression models with fuzzy clustering
The TSK model introduced by Takagi Sugeno and Kang TSK fuzzy reasoning is associated with fuzzy rules that have a special format with a func tional type consequent instead of the fuzzy consequent that normally appears in the MamdamiModel In this way the TSK approach tries to decompose the input space into subspaces and then approximate the system in each subspace by a simple linear regression m...
متن کاملBayesian Nonparametric Regression with Local Models
We propose a Bayesian nonparametric regression algorithm with locally linear models for high-dimensional, data-rich scenarios where real-time, incremental learning is necessary. Nonlinear function approximation with high-dimensional input data is a nontrivial problem. For example, real-time learning of internal models for compliant control may be needed in a highdimensional movement system like...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The American Statistician
سال: 2001
ISSN: 0003-1305,1537-2731
DOI: 10.1198/000313001300339969